Please find below papers that make use of the FROGS database.
Please email us your reference to be added on the list!
2023
Martinez-Villalobos, C., Neelin, J.D. Regionally high risk increase for precipitation extreme events under global warming. Sci Rep 13, 5579 (2023). https://doi.org/10.1038/s41598-023-32372-3
Feng, T., Zhu, X., & Dong, W. (2023). Historical assessment and future projection of extreme precipitation in CMIP6 models: Global and continental. International Journal of Climatology, 1– 17. https://doi.org/10.1002/joc.8077
2022
Roca, R., De Meyer, V., & Muller, C. (2022). Precipitating fraction, not intensity, explains extreme coarse-grained precipitation Clausius-Clapeyron scaling with sea surface temperature over tropical oceans. Geophysical Research Letters, 49, e2022GL100624. https://doi.org/10.1029/2022GL100624
Palharini, R.; Vila, D.; Rodrigues, D.; Palharini, R.; Mattos, E.; Undurraga, E. Analysis of Extreme Rainfall and Natural Disasters Events Using Satellite Precipitation Products in Different Regions of Brazil. Atmosphere 2022, 13, 1680. https://doi.org/10.3390/atmos13101680
Adloff, M., Singer, M. B., MacLeod, D. A., Michaelides, K., Mehrnegar, N., Hansford, E., et al. (2022). Sustained water storage in Horn of Africa Drylands dominated by seasonal rainfall extremes. Geophysical Research Letters, 49, e2022GL099299. https://doi.org/10.1029/2022GL099299
Liu, J., Wu, D., Li, Y., Ren, H., Zhao, Y., Sun, X., Zhang, H., & Ji, M. (2022). Spatiotemporal variation of precipitation on a global scale from 1960 to 2016 in a new normalized daily precipitation dataset. International Journal of Climatology, 42( 7), 3648– 3665. https://doi.org/10.1002/joc.7437
Sanogo, S., P. Peyrillé, R. Roehrig, F. Guichard, and O. Ouedraogo, 2022: Extreme Precipitating Events in Satellite and Rain Gauge Products over the Sahel. J. Climate, 35, 1915–1938, https://doi.org/10.1175/JCLI-D-21-0390.1.
Otgonbayar, M., Atzberger, C., Sumiya, E. et al. Estimation of bioclimatic variables of Mongolia derived from remote sensing data. Front. Earth Sci. 16, 323–339 (2022). https://doi.org/10.1007/s11707-020-0862-9
Amal John. Réponse des fortes précipitations et des sécheresses météorologiques à un accroissement du CO2 atmosphérique et au réchauffement global associé. Océan, Atmosphère. Université Paul Sabatier – Toulouse III, 2022. Français. ⟨NNT : 2022TOU30184⟩. ⟨tel-03969799⟩
Rômulo Augusto Jucá Oliveira, Rémy Roca, Stephan Finkensieper, Sophie Cloché, Marc Schröder,
Evaluating the impact of a time-evolving constellation on multi-platform satellite based daily precipitation estimates,
Atmospheric Research, Volume 279, 2022, 106414, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2022.106414.
Oliveira, R.A.J.; Roca, R. A Simple Statistical Model of the Uncertainty Distribution for Daily Gridded Precipitation Multi-Platform Satellite Products. Remote Sens. 2022, 14, 3726. https://doi.org/10.3390/rs14153726
Suman Bhattacharyya, S. Sreekesh, Andrew King, Characteristics of extreme rainfall in different gridded datasets over India during 1983–2015, Atmospheric Research, Volume 267, 2022, 105930, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2021.105930.
Thackeray, C.W., Hall, A., Norris, J. et al. Constraining the increased frequency of global precipitation extremes under warming. Nat. Clim. Chang. 12, 441–448 (2022). https://doi.org/10.1038/s41558-022-01329-1
V. Dos Santos, R.A. Jucá Oliveira, P. Datok, S. Sauvage, A. Paris, M. Gosset, J.M. Sánchez-Pérez,
Evaluating the performance of multiple satellite-based precipitation products in the Congo River Basin using the SWAT model, Journal of Hydrology: Regional Studies, Volume 42, 2022, 101168, ISSN 2214-5818, https://doi.org/10.1016/j.ejrh.2022.101168
Dhage, L., & Widlansky, M. J. (2022). Assessment of 21st century changing sea surface temperature, rainfall, and sea surface height patterns in the tropical Pacific Islands using CMIP6 greenhouse warming projections. Earth’s Future, 10, e2021EF002524. https://doi.org/10.1029/2021EF002524
Iman Mallakpour, Mojtaba Sadeghi, Hamidreza Mosaffa, Ata Akbari Asanjan, Mojtaba Sadegh, Phu Nguyen, Soroosh Sorooshian, Amir AghaKouchak, Discrepancies in changes in precipitation characteristics over the contiguous United States based on six daily gridded precipitation datasets, Weather and Climate Extremes, Volume 36, 2022, 100433,
ISSN 2212-0947, https://doi.org/10.1016/j.wace.2022.100433
Randriatsara, H. H.-R. H., Hu, Z., Xu, X., Ayugi, B., Sian, K. T. C. L. K., Mumo, R., & Ongoma, V. (2022). Evaluation of gridded precipitation datasets over Madagascar. International Journal of Climatology, 42( 13), 7028– 7046. https://doi.org/10.1002/joc.7628
Nguyen, P.-L., Bador, M., Alexander, L. V., Lane, T. P., & Ngo-Duc, T. (2022). More intense daily precipitation in CORDEX-SEA regional climate models than their forcing global climate models over Southeast Asia. International Journal of Climatology, 42( 12), 6537– 6561. https://doi.org/10.1002/joc.7619
Martinez-Villalobos, C., J. D. Neelin, and A. G. Pendergrass, 2022: Metrics for Evaluating CMIP6 Representation of Daily Precipitation Probability Distributions. J. Climate, 35, 5719–5743, https://doi.org/10.1175/JCLI-D-21-0617.1.
Helani Perera, Shalinda Fernando, Miyuru B. Gunathilake, T. A. J. G. Sirisena, and Upaka Rathnayake (2022).
Evaluation of Satellite Rainfall Products over the Mahaweli River Basin in Sri Lanka. Hindawi, Advances in Meteorology, Volume 2022, Article ID 1926854, https://doi.org/10.1155/2022/1926854
2021
Wood, R. R., Lehner, F., Pendergrass, A. G., and Schlunegger, S. (2021). Changes in precipitation variability across time scales in multiple global climate model large ensembles, Environ. Res. Lett. 16 084022, https://doi.org/10.1088/1748-9326/ac10dd
De Meyer, V. and R. Roca, 2021: Thermodynamic scaling of extreme daily precipitation over the tropical ocean from satellite observations. J. Meteor. Soc. Japan, 99, https://jmsj.metsoc.jp/GA/JMSJ2021-020.html
2020
Martinez-Villalobos, C., and J. D. Neelin, 2020: Climate models capture key features of extreme precipitation probabilities across regions. Environ. Res. Lett., https://doi.org/10.1088/1748-9326/abd351.
Nguyen, P. L., Bador, M., Alexander, L. V., Lane, T. P., & Funk, C. C. (2020). On the Robustness of Annual Daily Precipitation Maxima Estimates Over Monsoon Asia. Front. Clim. 2: 578785. doi: 10.3389/fclim.
Bador, M., Boé, J., Terray, L., Alexander, L. V., Baker, A., Bellucci, A., … & Vanniere, B. (2020). Impact of higher spatial atmospheric resolution on precipitation extremes over land in global climate models. Journal of Geophysical Research: Atmospheres, 125(13), e2019JD032184.
Roca, R., Fiolleau, T. Extreme precipitation in the tropics is closely associated with long-lived convective systems. Commun Earth Environ 1, 18 (2020). https://doi.org/10.1038/s43247-020-00015-4
https://www.nature.com/articles/s43247-020-00015-4
Stephens GL, Slingo JM, Rignot E, Reager JT, Hakuba MZ, Durack PJ, Worden J and R Roca, Earth’s Water Reservoirs in a changing climate, 2020, Proceedings of the Royal Society A, doi: 10.1098/rspa.2019.0458
Alexander L, Bador M, Roca R, Contractor S, Donat M, Nguyen PL: 2020 Intercomparison of precipitation extremes over global land areas from in situ, space-based and reanalysis products Environ. Res. Lett. in press
Bador et al 2020: Diverse estimates of annual maxima daily precipitation in a variety of quasi-global land observations Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab6a22
2019
Masunaga, H., M. Schröder, F. A. Furuzawa, C. Kummerow, E. Rustemeier, and U. Schneider, 2019: Inter-product biases in global precipitation extremes
Environ. Res. Lett., 14, 125016, doi:10.1088/1748-9326/ab5da9
Alexander et al 2019 On the use of indices to study extreme precipitation on sub-daily and daily timescales Environ. Res. Let https://doi.org/10.1088/1748-9326/ab51b6
Chris Funk et al 2019 Exploring trends in wet-season precipitation and drought indices in wet, humid and dry regions, Environ. Res. Lett.14 115002 https://doi.org/10.1088/1748-9326/ab4a6c
Roca R 2019 Estimation of extreme daily precipitation thermodynamic scaling using gridded satellite precipitation products over tropical land, Environ. Res. Lett, 14 095009, https://doi.org/10.1088/1748-9326/ab35c6
Golian S et al 2019 On the use of satellite, gauge, and reanalysis precipitation products for drought studies Environ. Res. Lett.14 075005 https://doi.org/10.1088/1748-9326/ab2203
Harrison L et al 2019 Identifying changing precipitation extremes in Sub-Saharan Africa with gauge and satellite products Environ. Res. Lett. 14 085007 https://doi.org/10.1088/1748-9326/ab2cae